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Preface

A one-day meeting in March 1999 at Nottingham was convened to explore techniques
for modeling human performance in synthetic environments. A list of participants is
available as Appendix A. The presentations served as preliminary versions of some chapters
of this book. The chapters were expanded based on the day’s discussions, extended
reflection, and further informal discussion.

Unlike avery similar, earlier review (Elkind, Card, Hochberg, & Huey, 1990) that noted
the need to develop theory before applying such models, we are able to conclude that the
models presented here are available and useful. The question remaining is how to improve
them. We found that the resulting report was usable as a general update to Pew and Mavor’'s
(1998) book, asit reviewed work that was done after their book. In particular, we were able
to examine a wider variety of cognitive architectures developed outside the United States.
This report also provides a detailed source of further ideas and suggestions for projects. We
particularly draw the reader’ s attention to the importance of the integration and usability of
models. Some implications apply more to the United Kingdom and Australia, but nearly all
are general.

The report proved popular, so we updated it and looked for a publisher to help
disseminate it more widely. Mike McNeese was instrumental in putting us in touch with the
Human Systems Information Anaysis Center (HSIAC). We are grateful to HSIAC for
agreeing to publish this book and preparing it for publication. Comments from Jeffrey A.
Landis, HSIAC Publications Manager and Editor, and Dr. Michael Fineberg, HSIAC Chief
Scientist, have significantly improved this work. We appreciate their support.

Stephen Croker and Peter Lonsdale provided useful comments and helped assemble
these materials. In addition to the workshop participants listed, we thank Angie Barnhill,
Tim Barnhill, Christina Bartl, Kevin Gluck, Simon Goss, lan Greig, Robin Hollands,
Nicholas Howden, Jm Jansen, Andrew Lucas, Mike McNeese, Emma Norling, Ralph
Rdénnquist, and Colin Sheppard for their help or comments. Brian Logan and Aaron Sloman,
while not listed as authors, did provide material that substantially helped in the preparation
of the book. This project was primarily supported by DERA (Bedford, UK) under contract
LSA/E20307, and also by DSTO (Austrdia) and later by the (US) Office of Naval Research
(contracts N000140110243, N000140110547, and NO000140210021). The conclusions
reported here, however, are solely the responsibility of the authors.

Frank E. Ritter

University Park, Pennsylvania
January 2003
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CHAPTER 1

Tasks and Objectives for Modeling Behavior in
Synthetic Environments

There are now humerous models of human behavior in Synthetic Environments (SEs),
and they serve a multitude of uses. It is worthwhile considering where and how to improve
these models to provice more realistic human behavior. This report provides a more recent
review of work following Pew and Mavor (1998), and provides a detailed source of further
ideas and suggestions. In addition to noting areas where models could be expanded to
include more complete performance, we particularly draw the reader’ s attention both to the
importance of the integration of models (and thus their reuse) and to the usability of models.
We will argue that improved usability (and reusability) is necessary for these models to
achieve their potential. We extend Pew and Mavor’s results by examining architectures
(e.g., COGENT, JACK, hybrid architectures) that were not included or available when Pew
and Mavor compiled their report, and by summarizing several promising areas for further
work that have arisen recently.

This report reflects the biases and specific expertise of the authors as they attempt to
identify a wide range of potential problems and provide possible solutions. Some of the
proposed projects are high risk and not all of the authors agree that these projects can be
accomplished. All agree, however, that if possible, they would be rewarding. Given the
diversity of human behavior, there remain many issues not covered here. For example, many
aspects of teamwork are important but not examined here. Most of the systems and
architectures reported here are continually evolving. Because of the rapid pace of
development in this area, our review may underestimate the capabilities of these systems
and several of our suggestions may already be incorporated in them.

1.1 The Role of Synthetic Forces

There are severa commonly acknowledged uses of cognitive models in synthetic
environments. These uses have included at least the range shown in Table 1.1. Thisis a
wide set. Pew and Mavor (1998) focused on the application of synthetic forces to training
partly because the major applications and successes of synthetic forces have been in this
domain. Further uses of synthetic forces have been outlined in other reviews (Computer
Science and Telecommunications Board, 1997; Lucas & Goss, 1999; Synthetic
Environments Management Board, 1998).

Human Systems IAC SOAR, 2003 1
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Table 1.1: Potential Uses of Modelsin Synthetic For ce Environments
e Training leaders
» Joint and combined training
» Training other personnd (e.g., support and logistics)
» Testing existing doctrine
» Testing possible future procurements
» Testing new doctrine
» Serving as aformal, runnable description of doctrine

The user community for synthetic forces would be better served if al these uses were
supported by a single system or approach. Currently, the models of behavior in these
systems have often been devel oped without along-term plan, and are only usable within the
simulation for which they were developed. Historically, few single systems have supported
more than one or two of the uses noted in Table 1.1. This is wasteful and can lead to
different behaviors being taught or used in different simulations when they should be
exactly the same behavior. The use of the Distributed Interactive Simulation (DIS) protocol
for distributed simulation is a step toward integration, but it does not apply to
behavior itsalf.

While having a single system or approach is highly desirable, there are good reasons
why multiple systems are currently used (in addition to a multitude of bad reasons as well).
Perhaps the most important reason why there are multiple models of behavior is that
existing approaches to modeling cannot support al of the uses in Table 1.1 equally well.
Models that focus on aggregate, or large unit behavior, do not support low-level simulations
very well. Models that predict average behavior are much less useful for practicing tactics
and procedures. Models that are good for training provide detailed data that have to be
extensively summarized and aggregated to be of use to planners. Planners and evaluators,
for example, may find useful datain large simulations such as the Purple Link exercise, part
of STOW97 (further information is available from Ceranowicz, 1998, as well as from
www.dricomamy mil/'STRICOM/DRSTRICOM/DOCATS), although such simulations cannot yet
be convened within an afternoon or even a week to examine how a new platform performs.
This report will makes suggestions on all of these levels, but it does not intend to be
comprehensive.

1.2 Definition of Terms

There are severa terms used in this report that have meanings specific to the domain of
behavioral modeling. The term model, for example, will refer exclusively to cognitive
models, and the term “simulation” will refer exclusively to task simulations We review
these terms here, starting by introducing synthetic forces. Modular Semi-Automated Forces
(ModSAF) is briefly explained to provide a common system as a point of reference. We
then define the terms we will use with respect to models of behavior.

2 Human Systems IAC SOAR, 2003
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1.2.1 Synthetic Forces

Synthetic forces exist in military simulations, sometimes alongside real forces that have
been instrumented and linked to the simulation. There are now synthetic force simulations
covering al of the armed services. Synthetic forces can be separated into two components,
physical and behavioral. The physical aspects represent the movement and state of platforms
(objects) in the simulation, including such aspects as maximum speed and the set of actions
that can be performed in the world. The physical aspects provide constraints on behavior.
Simulations of the physical aspects are fairly complete now for most purposes, although
they remain important in their own right (Computer Science and Telecommunications
Board, 1997; Synthetic Environments Management Board, 1998).

The behavioral aspects of a synthetic force platform determine where, when, and how it
performs the physical actions, that is, its behavior. Many human and entity behaviors can be
simulated, such as movement and attack, but behavior has been less veridically modeled
than physical performance. The next step to increase realism is not only to include further
intelligent behavior but also to match more closely the timing and sequence of human
behavior when performing the same tasks.

1.2.2 Modular Semi-Automated Forces

Modular Semi-Automated Forces (ModSAF) is a system for simulating entities
(platforms) on a simulated battlefield (Loral, 1995). It is perhaps the most widely used
behavioral simulator in military synthetic environments. The goal of ModSAF isto replicate
the behavior of simulated platforms in sufficient detail to provide useful training and
simulation of tactics.

ModSAF includes the ability to simulate the most common types of physical platforms,
such as atank, and external effects on those platforms, like weather and smoke. The terrain
is defined in a separate database, which is shared by other simulators in the same exercise
using the DIS simulation protocol. Multiple platforms can be simulated by a single
ModSAF system.

The local platforms interact with remote platforms by exchanging approximately 20
different types of information packets. Examples of packet types include announcing where
the platform is located (the other platforms compute whether the originator can be seen),
where radar is being emitted, and where shots are being fired. Thus, the features of the
packets vary. Each simulation is responsible for updating its own position and computing
what to do with the information in each packet, so that atank does not directly shoot another
tank, for example. Attackers send out projectile packets and the target tank computes that it
would be damaged by their projectiles.

Some semi-intelligent behaviors are included in ModSAF through a set of about 20
different simple scripts. These scripts support such activities as moving between two points,
hiding, and patrolling.

ModSAF is a large system. It can be compiled into several major versions, including
versions to test networks and specific versions for each service. The terrain databases each
include up to 1 gigabyte of data. In 1999, simulating multiple entities required a relatively
fast workstation (100 MHz+) with a reasonable amount of memory (32 MB+).

Human Systems IAC SOAR, 2003 3
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A major problem is usability as ModSAF is large and has a complicated syntax. Users
report problems learning and using it. A better way to provide its functionality needs to be
found or its usability needs to be improved directly.

1.2.3 Frameworks, Theories, Models, and Cognitive Architectures

It is common in cognitive science to differentiate between severa levels of theorizing
(e.g., Anderson, 1983; 1993, chap. 1) and defining these levels now will help us in the
remainder of this report. Framework refers to the specification of a few broad principles,
with too many details left unspecified to be able to make empirical predictions. For
example, the idea that human cognition acts as a production system offers a framework for
studying the human mind.

Theory adds more precision to frameworks, and describes data structures and
mechanisms that at least alow qualitative predictions to be made. For example, the
production system principles presented in Newell and Simon (1972) form atheory of human
cognition.

Models are theories implemented as computer programs or represented mathematically
to apply to specific situations or types of situations. While generaly more limited in their
domain of application than theories, models typically provide more accurate, quantitative
predictions.

Cognitive architecture has two meanings: (1) specifications of the main modules and
mechanisms underlying human cognition, and (2) the computer program implementing
these gpecifications. These meanings are separate and distinct but usually are used as
equivalent. Cognitive architectures, as proposed by Newell (1990), offer a platform for
developing cognitive models rapidly while keeping the theoretical coherence between these
models intact. These cognitive architectures are often seen as equivaent to Unified Theories
of Cognition (UTC), away to pull al that is known about cognition into a single theory. In
Appendix B we include brief descriptions of two commonly used cognitive architectures,
ACT-R and Soar.

There exists no generally agreed definition of hybrid architectures. Some use the term
when a cognitive architecture includes symbolic features (e.g., a production system) as well
as non-symbolic features (e.g., neural net spreading of activation among memory elements);
others, such as Pew and Mavor (1998), use the term when two or more architectures of any
kind are combined (e.g., Soar and EPIC). We use the latter definition here because this type
of hybrid architecture has become more important and more frequently used.

When comparing theoretical proposals, it is essential to keep in mind the level at which
the proposals were formulated. Typically, a framework will cover a large amount of
empirical regularities without specifying many details, while a model will cover a small
amount of data with great precision. It is generally agreed that models are more useful
scientifically than theories or frameworks because they make clear-cut predictions that can
be tested with empirical data, and hence, are less amenable to ad hoc explanations (Popper,
1959). Models are, however, harder to create and use.
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1.3 Summary of Modeling Human and Organizational Behavior

While the reader is likely to have seen Pew and Mavor’s (1998) Modeling Human and
Organizational Behavior, we briefly review it here to provide background for readers not
familiar with it and to provide some useful context. In their book, Pew and Mavor review
the state of the art in human-behavior representation as applied to military simulations, with
an emphasis on cognitive, team, and organizational behavior. Their book is based on a panel
that met for 18 months and drew extensively on a wide range of researchers. It is available
as a hardcopy book, as well as online (books.nap.edu/catal og/6173.html).

Pew and Mavor look not just at representing behavior, but also at methods for
generating behavior. They provide a review of the uses of models of behavior in synthetic
environments. They include areview of the magjor synthetic environmentsin use by the U.S.
military. These environments are examples of the range of current and potential uses and
levels of simulation.

Their book provides a useful summary of integrated (cognitive) architectures. It is
comprehensive and clear enough that we have used it to teach undergraduate students. Their
summary includes a table comparing the architectures. We will apply the same table to
review several additional architectures.

Their book also reviews the important areas to modeling human behavior in synthetic
environments. This is a very wide range, encompassing nearly al of human behavior. Their
book reviews attention and multi-tasking, memory and learning, human decision making,
situation awareness, planning, behavior moderators (such as fatigue and emotions),
organizational (small group) behavior, and information warfare (e.g., how the order of
information presentation influences decision making). Their book concludes with a
framework for developing models of human behavior followed by conclusions and
recommendations. Each of these reviews s clearly written and limited only by the spaceit is
allowed. The reviews are quite positive, suggesting that major aspects of behavior are either
aready being modeled, or can and will be modeled within afew years. This positive toneis
in stark contrast to a similar review a decade earlier, which could only note open questions
(Elkind, Card, Hochberg, & Huey, 1990).

1.4 What Modeling Human and Organizational Behavior Does Well

Pew and Mavor’'s book is a useful and semina book for psychology and modeling.
Their book is useful because the reviews it provides, while they could be extended, are
unusualy clear and comprehensive, covering the full range of relevant behavior. It could
serve as a useful textbook for professionals in other areas to teach them current results and
problemsin the areas of psychology and modeling.

Their book is seminal because the authors lay out a complete review of cognition that is
widely usable. While their review is similar to Newell’s (1990) and Anderson and Lebiere s
(1998) reviews, Pew and Mavor’'s review is not situated within a single architecture; the
result isamore global and only dightly less-directed view.
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The reviews of the models and data to be modeled together, because of their scope and
potential impact, constitute a call to arms for modelers of synthetic forces. The juxtaposition
of the data and ways to model them is enticing and exciting. This approach of modeling
behavior will significantly influence psychology in genera if the modeling work continues
to be successful. Models of synthetic forces in the near future will subsume enough general
psychology data that they will ssimply represent the best models in psychology.

1.5 Where Modeling Human and Organizational Behavior Can Be Improved

There are surprisingly few problems with Pew and Mavor’s review. However, they do
not review al of the possible regularities of human behavior. We will add a few additional
important regularities and provide further arguments to support many of their main
conclusions. They could have referenced, for example, the Handbook of Perception and
Human Performance (Boff, Kaufman, & Thomas, 1986) and the Engineering Data
Compendium (Boff & Lincoln, 1988) for a wide-ranging list of existing general regularities
in perception and performance (the latter reference has a so been put into a CD-Rom version
as well, see iac.dtic.mil/hsiac/products/cashe/cashe.ntml). In the area of human decision
making, Dawes (1994) review is also valuable. Pew and Mavor do not cite a quite relevant
report on how this type of modeling is aso being developed as entertainment (Computer
Science and Telecommunications Board, 1997), and, not surprisingly, they could not report
a concurrent similar United Kingdom review (Synthetic Environments Management Board,
1998).

On ahigh level and early on, they explicitly note that they will not review the usability
of behavioral models. We will argue that improved usability is necessary for these modelsto
achieve their potential.

They do not have the space to review all the integrative (cognitive) architectures. While
it would be unfair to cal this book dated at this point in time, there are aready a few
architectures worth considering that were not available to them.

They do not dwell on the ability to describe human behavior, instead they focus on how
to generate it. There remains some need to be able to describe the behavior before
generating it, which we will take up below.

Finally, they did not have the space to lay out very detailed projects to fulfill their
short-, medium-, and long-term goals. We provide a more detailed, but still incomplete, set.

1.6 Structure of This Report

Chapter 2 provides amplifications, updates, and additions to Pew and Mavor’s list of
psychological regularities that should be included in models of human behavior. Chapter 3
notes problems integrating models with simulations as well as problems integrating them
with each other to make larger, more complete models. Chapter 4 takes up the issues
surrounding usability of behaviora models. Usability of the models themselves was
considered to be outside the scope of Pew and Mavor’s report (1998, p. 10). We will argue
that improving the usability of these models by their creators and other analystsis not only
desirable, but necessary for the success of modeing itself. Chapter 5 considers new
techniques and cognitive architectures for modeling human behavior in synthetic
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environments with respect to the aims of the previous two chapters. Chapter 6 concludes
with alist of projects to address problems identified in Chapters 2, 3, and 4 based on the
techniques and architectures in Chapter 5.
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CHAPTER 2

Current Objective: More Complete Performance

There are a wide range of behaviors that have yet to be incorporated into existing
models. Included in this list are humerous additional relevant regularities about human
behavior (see Boff & Lincoln, 1988, for a subset). The question that must be addressed is:
which behaviors are the most important and most accessible to incorporate? We note here
several of the most promising or necessary behaviors to be included next in models of
human performance, based on our experiences and previous work.

The suggestions we make later tend to be based on modeling the individual. Much of
the behavior being modeled currently in synthetic environments is different because it needs
to include small and large groups and is aggregated across time or situations. As smaller
time scales and more intricate and fine-grained simulations are developed and used, such as
for modeling urban terrorism, the behavioral issues noted here will become more important.

We start with learning. While Pew and Mavor include learning as a useful aspect of
performance, we believe learning to be essential. We also expand the case for including
models of working memory, perception, emotions and behavioral moderators, and erroneous
behavior. We then can examine higher-level aspects of behavior to be considered, starting
with integration of models and ending with information overload.

2.1 Learning

Learning is mentioned as important in several ways by Pew and Mavor (1998).
Learning (i.e., training) isthe largest role of the military in peace time (i.e., rehearsal, p. 30),
essential for multi-tasking behavior (pp. 114-115), an important aspect of human behavior
(chap. 5), and important within groups (chap. 10). We cover learning again here.

Pew and Mavor mention several of the advantages of learning. There are severa
additional advantages that we can emphasize. Tactics are influenced by learning. In
addition, there is a home-field advantage: working within your own territory, because you
know it, makes additional tactics feasible and provides generally improved performance.
(Working within your own territory would a so provide some additional motivation.)

Including learning in models would provide a mechanism for producing different levels
of behavior. Experienced troops, for example, would be different not in some numeric way
in that they react faster (dthough thisis probably true), but in a more qualitative way in that
they know more and use different strategies. Learning modifies, constrains, and supports the
use of computer interfaces (Rieman, Young, & Howes, 1996); similar effects may be found
in exploring terrain and implementing tactics in new geographic spaces.

Programming—that is, creating the model directly—may be too difficult. It may be
easier for models to learn behaviors than for these behaviors to be programmed directly.
This argument has been put forward by connectionist researchers for some time.
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Theoretical work in this area of learning has direct implications for training within the
military and within schools. Models that learn can be used to understand and optimize
learning (Ohlsson, 1992). If we can program models to learn, the behavior and knowledge
that result may be different from the initial knowledge that the system started with or from
the expert performance that we currently teach. This fina knowledge may be useful for
teaching. In the case of photocopying (Agre & Shrager, 1990), for example, better strategies
arise through practice but are not valuable enough to teach. In military domains, it may be
useful to find and then to teach the improved strategies that may arise from grossly extended
practice, that is, tactics that are better but that no person has had enough practice to learn
before. At that point, explanation of behavior will also become important to understand why
the new behavior isuseful sothat it is trusted.

2.2 Expertise

Expert behavior has an important role to play in models of human performance
(Shadbolt & O’Hara, 1997). One of the Western powers greatest strengths is training in
depth and breadth. Practice influences speed of processing and error rates, particularly under
stress. If synthetic forces are to be used to test doctrine, the effect of training on expertise
must be included.

Expert behavior has been studied extensively in recent years and a great deal is known
about it (Chipman & Meyrowitz, 1993; Ericsson & Kintsch, 1995; Gobet, 1998; Gobet &
Simon, 2000; Hoffman, Crandall, & Shadbolt, 1998). Some essentia characteristics of
expertise are highly developed perception for the domain material, selective search for
solutions in that domain, and a good memory for domain-related material. In most domains,
problem-solving behavior (search) differs aswell: novices tend to search backward from the
situation to find solutions and experts tend to search forward from the situation to find
solutions (Larkin, McDermott, Simon, & Simon, 1980). Finally, transfer of expertise to
other domainsis limited.

Klein and his colleagues (e.g., Klein, 1997) have studied real-time performancein rea
settings (as opposed to laboratory settings) in detail, and have essentialy found that the
characteristics mentioned above are also critical in these situations. A number of rather
extensive reviews have been undertaken of Klein's approach, which is often referred to as
Naturalistic Decision Making (NDM) (e.g., Hoffman & Shadbolt, 1995). A method to elicit
this type of knowledge has been developed by Klein and his associates. It is known as the
Critical Decision Method and is described in Hoffman et a. (1998). The specificaly real-
time challenges of acquiring knowledge relating to perceptually cuerich decision making
are discussed in a second Defence Evaluation and Research Agency (DERA), United
Kingdom, report by Hoffman and Shadbolt (1996).

Given the fact that it takes a long time to become an expert—the rule of 10 years o
10,000 hours of practice and study is often mentioned (e.g., Simon & Chase, 1973)—the
size of the dataset has made it difficult indeed to study rea-time learning on the road to
expertise. However, real-time learning in simpler problem-solving tasks has been studied
and modeling accounts have been provided (Anzai & Simon, 1979; John & Kieras, 1996;
Nielsen & Kirsner, 1994; Ritter & Bibby, 2001). Some of these results may apply to expert
learning in more complex tasks as well.
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While experts vastly outperform non-experts in most domains, exceptions to this rule
have been found in domains such as clinical diagnosis, clinical prediction, personnel
selection, and actuarial predictions (Dawes, 1988). In these domains, experts perform only
dightly better than non-experts, and typically perform worse than simple statistical methods,
such as regression analysis. One other aspect of behavior that distinguishes experts from
novices is the ability to recover from errors. An important question is to which category
military diagnosing and prediction belong because of the uncertainties involved? And, based
on this answer, what can be done (either by providing formal tools or by improving training)
to remedy this situation and assist error recovery?

The effect of learning local environments and strategies (own and opponent’s) must also
be included. Having learned the loca terrain probably explains much of the home-field
advantage. How does thislearning occur?

Within the sub-field of knowledge-engineering there have been considerable efforts to
produce methodologies for the acquisition, modeling and implementation of knowledge-
intensive tasks. It is a moot point whether the resulting decision-support systems are
cognitively plausible. Nevertheless, these methodologies now provide powerful ways of
constructing complex systems that exhibit task-oriented behavior. To this end, anyone
engaged in engineering large-scale synthetic environments should look at the principles laid
down in the most recent of this work. The most accessible source is probably Schreiber et al.
(2000).

2.3 Working Memory

Central to al questions about human cognition and performance is the role of working
memory. Working memory is implicated in almost all aspects of cognitive performance
(Boff & Lincoln, 1986, Sec. 7; Just & Carpenter, 1992; Newell & Simon, 1972; Wickens,
1992). It is widely agreed that limitations of working memory are a major determinant of
limitations of cognitive performance. Definitions of working memory are varied but for
present purposes we can take it to refer to the mechanisms that maintain and provide access
to information created or retrieved during the performance of atask.

Modern approaches to the psychological study of human working memory often take as
their starting point the famous paper by Miller (1956) and argue that people can retain only
around “7 +/- 2" items in short-term memory. Later work has tended to revise that estimate
downwards, towards three to four items of unrelated information (Crowder, 1976; Simon,
1974).

A more recent and influential line of work by Baddeley (1986, 1997) presents working
memory as a dual system for the rehearsal of information, consisting of (1) a phonological
loop, that contains approximately 2 seconds of verbalizations, for the rehearsal of
phonological, acoustic, or articulatory information (e.g., useful for repeating a phone
number until you dia it); and (2) a visua-spatial scratchpad, with a smaller and less-
determined capacity (e.g., useful when searching for an object that you have just seen), to
play an analogous role for the maintenance of pictorial and spatia information.
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Other approaches within experimental psychology place more emphasis on the role of
working memory in both storing and manipulating temporary information (Daneman &
Carpenter, 1980; Just & Carpenter, 1992). An important recent extension to the notion of
working memory comes from the study of expertise, where Ericsson and Kintsch (1995)
argue that after extensive practice in a particular domain people can, through specialized
retrieval structures, use long-term memory for the rapid storage of temporary information
(i.e., long-term working memory).

A recent book (Miyake & Shah, 1999) reviews a range of current approaches to the
modeling of working memory, although many of the models do not have the explicitness
and generality needed to support the simulation of human performance in complex tasks. Of
those that do, their view of working memory varies widely. Some, such as ACT-R
(Anderson & Lebiere, 1998) and CAPS (Just & Carpenter, 1992), consider working memory
not as a separate structural entity but rather as an activated region of alarger, more genera
memory system, in which the limitations of working memory derive from a limited total
guantity of activation. Just and Carpenter (1992), and more recently ACT-R models, have
extended that view to the modeling of individual differences in working memory where
different people are assumed to have different maximum quantities of available activation
(Daily, Lovett, & Reder, 2001; Lovett, Daily, & Reder, 2000). A number of these ideas are
put together by Byrne and Bovair (1997) who modeled (in CAPS) the way that a class of
performance errors, in which people forget to complete subsidiary aspects of atask (such as
removing the original from a photocopier), is affected by working memory load.

In contrast to these resource-limited models, Soar (Laird, Newell, & Rosenbloom,
1987; Newell, 1990) imposes no structural limitation on working memory. Using Soar,
Young and Lewis (1999) explore the possibilities of working memory being constrained
not by physical resources but by functional limitations and by specific kinds of similarity-
based interference.

In summary, the current position is that human performance is known to be highly
dependent on working memory and working memory load, and to be susceptible to factors
such as individual differences (Just & Carpenter, 1992), distractions (Byrne & Bovair,
1997), emotion and stress (Boff & Lincoln, 1988), and expertise (Ericsson & Kintsch,
1995). Many existing models of human performance (e.g., as reviewed in Pew & Mavor,
1998) do not directly model the role of working memory. Models exist (Miyake & Shah,
1999), and some approaches to cognitive modeling (ACT-R, CAPS, Soar) have potential for
improving predictions of human performance in realistic task situations by including more
accurate theories of memory. There remains a need for the investigation and development of
more explicit and complete models, with broader scope, of the role of working memory in
human performance.

2.4 Emotions and Behavioral Moderators

Emotion, affect, motivation, and other behavioral moderators are increasingly being
seen as factors that can and often do influence cognition. This view has received attention
among arange of computer scientists and psychologists. Pew and Mavor (1998, chap. 9) lay
out an initial case for including emotion as an internal moderator of behavior. The British
HCI Group sponsored a one-day meeting on “ Affective Computing: The Role of Emotion in
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Human Computer Interaction” that attracted 70 people to University College, London
(Monk, Sasse, & Crerar, 1999). Picard’s (1997) recent book provides a useful review of
emotions and computation in general. Sloman’s (1999) review of the book and Picard’s
(1999) response are useful summaries. A further case is aso made in the section on the
Sim_Agent Toolkit. We present here an additional argument for including a model of
emotions and behavioral moderators in models of synthetic forces, note two potentia
problems with existing models, and sketch an initial theory.

2.4.1 Further Uses of Emotions and Behavioral Moderators

Models of emotions and behavioral moderators may be necessary for modeling non-
doctrinal performance such as insubordination, fatigue, errors, and mistakes. Many authors
have a so noted the role of emotion in fast, reactive systems (Picard, 1997, provides a useful
overview). Individual differences in emotions may be related to personality and differences
in problem solving. That is, the range of emotions may be best explained as an interaction
that arises between task performance and situation assessment and an agent’s likes, desires,
and personal cognitive style. An argument is starting to be put forward that changes in
motivation based on temporally local measures of success and failure may help problem
solving (Belavkin, 2001; Belavkin & Ritter, 2000; Belavkin, Ritter, & Elliman, 1999).

2.4.2 Working Within a Cognitive Architecture

Emotions arise from structures related to cognition and should be closely related to and
based on cognitive structures. All of the arguments for creating a unified theory of cognition
(Anderson, Matessa, & Lebiere, 1998; Newell, 1990) also apply to creating a unified theory
of emotion as well. The effects of emotions and other behavioral moderators on cognition
are presumably not task-specific, so their implementation belongs in the architecture, not in
the task knowledge.

Theories of emotions should thus be implemented within a cognitive architecture. This
will alow them to realize al the advantages of being within a cognitive architecture,
including being reusable and being compared to and incorporated within other models.
Some models of emotions have been built within a cognitive architecture (Bartl & Ddrner,
1998; Belavkin, Ritter, & Elliman, 1999; Franceschini, McBride, & Sheldon, 2001; Gratch
& Marsdla 2001; R. Jones, 1998; Rosenbloom, 1998). Being created within an
information-processing model has required them to be more specified than previous
theories. Being part of a model that performs the task has also alowed them to make
more predictions.

2.4.3 A Sketch of a Computational Theory of Emotions

An important aspect of cognition isto process sensory information, assign meaning to it,
and then decide upon a plan of action in response. Thisis a real-time process in which new
sensory information arrives continuoudly. This view is similar to the view put forward by
Agre and Chapman (1987) about representationless thinking. The plan must therefore be
dynamically reconfigurable and will often be abandoned in favor of a better plan midway
through its execution. Elliman has a speculative view of the role of emotions in cognition,
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similar to Rasmussen’s (1998) stepladder framework of behavior, which makes the
following assumptions:

The amount of sensory data available at any moment is too large for attention to be
given to more than a small fraction of the data.

The conscious consideration of the results of perception is an expensive process in
terms of the load on neural hardware and also time-consuming.

Most sensory processing is unconscious in its early stages in order tha expensive
conscious processes heed consider only the results of perception. These results
might include labeled objects with a position in space, for example “atank moving
its turret in that clump of trees.” Conscious processes might well add further detail
such as the type of tank and the range of its gun.

Attentional mechanisms are needed to direct the limited high-level processing to the
most interesting objects. These may be novel, brightly colored, fast-moving, or
potentially threatening.

Planning is an especialy heavy computational process for the human mind and one
that is difficult to carry out effectively under combat conditions. (Perhaps the best
way to explain why military doctrine is useful is that it digtills the best generic
practice and trains the soldier to behave in away that might well have been a chosen
and planned behavior if the individual had the time and skill to formulate the action
himself. The danger is that no doctrine can envisage all scenarios in advance and, on
occasion, the use of doctrine in arigid manner may be harmful.)

From an evolutionary perspective this system of unconscious processing of sensory
input, attentional mechanisms, and cognitive planning (together with speech-based
communication) is a masterstroke of competence for survival. However, it has one
crippling disadvantage—it is too slow to react to immediate and sudden attack.

Rapid reaction to possible threat without the time for much cognitive processing is
clearly of huge value. In this framework emotion can be seen as kind of labeling process for
sensory input. Fear particularly fits this pattern and is a label that causes selected sensory
input to literally scream for attention. For this process to work rapidly it needs to be
hardwired differently than higher-level cognitive processes. There is strong evidence that
the amygdala is intimately involved in the perception of threat and able to trigger the
familiar sensation of fear (e.g., Whalen, 1999). If this organ of the brain is damaged,
individuals may find everyday events terrifying while not perceiving any need for alarm in
life-threatening situations.

This rapid, emotive response to sensory data is relatively crude and prone to fase
alarms. Reactive behavior is triggered that may be involuntary, for example, the startle
reaction and physiological changes due to the release of noradrenalin. After the reaction
response, it takes time for cognitive processes to catch up and make a more informed
assessment of the situation and actua threat. If this emotive, reactive stimulation is excited
in a chronic manner then susceptible individuals may become less effective, with impaired
ability to think and plan clearly. Any kind of anxiety is aform of stress. Because individuals
have afinite capacity for absorbing it, excessive stress results in fatigue.
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2.5 Errors

Ideally, military behavior is normative, that is, what is done is what should have been
done. Human behavior does not always match the normative ideal of military behaviors.
One of the most important aspects of human performance, which has often been overlooked
in models of behavior and problem solving, is errors (although see, for example, Cacciabue,
Decortis, Drozdowicz, Masson, & Nordvik, 1992; Freed & Remington, 2000; Freed, Shafto,
& Remington, 1998). There is a consensus building about the definition of errors—for most
people an error is something done that was not intended by the actor, that was not desired,
and that placed the task/system beyond acceptable limits (e.g., Senders & Moray, 1991).

Part of the reason for omitting errors from models of behavior is the fallacy that they are
produced by some special error-generating mechanism that can be bolted on to models once
they are producing correct behavior on the task at hand. Often, however, the actions that
precede errors would have been judged to be correct if the circumstances had been dightly
different. In other words, as Mach (1905/1976) observed, knowledge and error both stem
from the same source.

Evidence shows that novices and experienced personnel will often make the same errors
when exposed to the same circumstances. The difference lies in the ability to notice and
recover from these errors. Experienced personnel are more successful at mitigating errors
before the full consequences arise. In other words, it is the management of errors that is
important and needs to be trained (Frese & Altmann, 1989), rather than vainly trying to
teach people how to prevent the inevitable.

2.5.1 Training About Errors

In any complex, dynamic environment, such as a military battlefield, the consequences
of uncorrected errors are potentially disastrous. While normally a string of mistakes is
required to create a disaster, the rapid pace of the battlefield and adversaries allows single
mistakes to become more catastrophic.

There is, therefore, a real need to learn how to manage errors in an environment in
which the consequences are less severe. An advantage of using synthetic environments is
that comparative novices can experiment in unfamiliar situations, with restrictions
approximating the real environment in time, space, enemy capabilities, and so on, but with
the knowledge that the consequences of any errors can be recovered. In addition, multiple
scenarios can be played out over a compressed time period, thereby providing the novice
with avariety of experiences that would take many years to accumulate through exposure to
situations in the real world. This can be a great training aid, literally giving years of
experience in far less time. When novices were trained in aircraft electrical-system
troubleshooting using a simulated system, they were able to acquire years of experiencein
months because the tutor let them practice just their diagnostic skills without practicing their
disassembly skills (Lesgold, Lagjoie, Bunzon, & Eggan, 1992).
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2.5.2 Models That Make Errors

There are several process models complete enough to make errors, depending to some
degree on the definition of error. Models that include errorful behavior exist in EPAM
(Feigenbaum & Simon, 1984; Gobet & Simon, 2000), ACT-R (Anderson, Farrdl, & Sauers,
1984; Anderson & Lebiere, 1998; Lebiere, Anderson, & Reder, 1994) and Soar (Bass,
Baxter, & Ritter, 1995; Howes & Young, 1996; Miller & Laird, 1996), athough each
generates errors in different ways and at different levels. Fewer models exist that model
error recovery, although thisis clearly the next aspect to mode.

A problem with models and humansiis that the erroneous behavior is often task-specific;
given a new task, both models and humans might not generate the same behavior. In other
words, the erroneous behavior arises as a result of the combination of human, technological,
and organizational (environmental) factors. Vicente (1998) delineates some of the problems
inthis area.

There are various taxonomies of errors that could be incorporated into models of
performance. There are also other constraints that reduce the level of performance that are
worth exploring, including working memory (Young & Lewis, 1999), attention, and
processing speed due to expertise.

2.6 Adversarial Problem Solving

Adversarial problem solving is different from simple problem solving and makes
additional requirements for modeling behavior in synthetic environments. Planning is not
done within a static environment, but done in an environment with active adversaries.

Research on adversaria problem solving (e.g., Chase & Simon, 1973; de Groot
1946/1978; Gobet & Simon, 2001; Newell & Simon, 1972) has identified several aspects of
cognitive behavior that have been shown to generalize to other domains, including the
military domain (Charness, 1992). A key result is that players do not follow a strategy such
as minimax but that they satisfice (Simon, 1955), that is, they satisfy themselves with a
good-enough solution, which can be far from the optimal solution (de Groot & Gobet, 1996;
Gobet & Simon, 1996a). This satisficing behavior can be explained by the processing and
capacity limits of human cognition, such as the time to learn a new chunk or the capacity of
short-term memory (Newell & Simon, 1972).

A second, related aspect isthat a player’s search is highly selective: only afew branches
of the search tree are explored. The choice of subspace to search seems to be constrained by
pattern-recognition mechanisms (Chase & Simon, 1973; Gobet, 1998; Gobet & Simon,
1996a). A consequence is that misleading perceptual cues may result in the exploration of
an incorrect subspace. For example, Saariluoma (1990) reported that chess masters found a
suboptimal solution when the features of the position led them to look for a standard,
although inferior, subspace. The consequence for understanding combatant behavior is that
pattern recognition may influence the course of action chosen as much as the detail of the
way the search is carried out. In fact, de Groot (1946/1978) did not find differences in the
macrostructure of search of chess players at different skill levels.

A third important result is that chess players re-investigate the same sequence of actions
several times, interrupted or not by the analysis of other sets of actions. De Groot (1946) has
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called this phenomenon progressive deepening. It is related to the selective search shown by
experts in other areas (Charness, 1991; Ericsson & Kintsch, 1995; Gobet & Simon, 1996g;
Hoffman, 1992). De Groot and Gobet (1996) propose that progressive deepening is due both
to the limits of human cognition (limited capacity of short-term memory, slow encoding
time in long-term memory) and that with this searching behavior, information gathered at
various points of the search may be propagated to other points, including previously visited
points (this could not be done with a search behavior such asminimax).

These features of cognition, identified in adversaria problem solving, also occur in
Rapid Decision Making (RDM) in domains such as firefighting, combat, and chess players
in time-trouble. Interestingly, the model developed by Klein and his colleagues (see Klein,
1997, for a review) singles out the same features as the model developed by Chase and
Simon (1973) to explain expert chess-playing: pattern recognition, selective search, and
satisficing behavior.

While some aspects of adversarial problem solving are well understood, others have yet
to be studied in any depth. Such aspects include the way the function used to evaluate the
goodness of a state (the evaluation function) changes as a function of time, the link between
the evaluation function and pattern recognition, or the learning of domain-specific
heuristics, which al have direct implications for combat behavior.

Relatively little research has been done on how players take advantage of the thinking
particularities of their opponent, in particular, by trying to outguess him or her. Jansen
(1992) offersinteresting results. He has developed a computer program that takes advantage
of some features and heuristics of human cognition in simple chess endgames, such as the
tendency, in human players search, to avoid moves that lead to positions with a high-
branching factor, and to prefer moves that lead to forced replies. Using these features and
incorporating them in its evaluation function, the program was able to win faster (in won
positions) or to avoid defeat (in lost positions) more often against human players than by
using a standard alphabeta search. In principle, such an approach could be extended to
include both skill-related and individual differencesin synthetic environments.

In comparison to perception and memory in games, relatively little computer modeling
of human behavior has been done with adversarial problem solving (if one excludes pure
Artificial Intelligence [Al] research, in which adversarial problem solving has been a
favorite subject of research). One may mention the previous work of Simon and colleagues
(Baylor & Simon, 1966; Newell, Shaw, & Simon, 1958), and the programs of Pitrat (1977),
Wilkins (1980), and Gobet and Jansen (1994). All of these programs were created for chess
and most cover only a subset of the game.

There are implications of adversarial search variation for performance (i.e., how well a

planner models an opponent). This would be a natural place to model various levels of
experience in opponents.

2.7 Variance in Behavior

Including more variety in how a model performs a task is one of the next steps for
improving the realism of synthetic forces. Currently, many models will execute a task the
same way every time and for every equivalent agent. In the real world, thisis not the case.
The choice of strategies and the ordering of substrategies will vary across agents and vary
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for a given agent across time. This lack of variance makes adversaries and allies too
predictable in that they aways do the same thing.

Including variance in behavior is also necessary when behavior is less predictable.
Novices, with less knowledge, have greater variance in behavior (Rauterberg, 1993). In the
past, variance was intentionally suppressed in simulations because it was thought that
variance in real behavior was suppressed through doctrine and training. Accounting for
variety in behavior is of increasing importance when modeling less-prepared and less-
trained forces, and now for improving model accuracy as variance in real behavior
is admitted.

Variance in behavior is aso important when modeling non-combatant agents, such as
white forces and civilians. These agents may be producing their behaviors deterministically,
but the determiners are often hidden from other agents, making them appear relatively
unpredictable. Finaly, the ability to model a variety of behaviors is necessary for
sensitivity analysis.

Variance will arise out of several factors. It may arise from different levels of expertise,
which is covered above. It may arise from different strategies, which will require including
multiple strategies and noting where orders are less likely to be followed and when panic
results in orders being ignored. Variance may also arise as a type of error, such as applying
aright action in the wrong circumstances.

In any case, variance in agent behavior in synthetic environments particularly needs to
be included in training materials. Humans are very good pattern-recognizers—although they
do not always look for or know the right pattern—and will take advantage of models that do
not vary their behavior. The real opponents may not be so predictable.

2.8 Information Overload

Problems with information overload have been noted numerous times (e.g., Woods,
Patterson, Roth, & Christoffersen, 1999). Hoffman and Shadbolt (1996) provide areview of
work on information overload in real-time, high-workload military contexts. They also
discuss challenges that information overload raises for knowledge acquisition in the context
of synthetic forces environments.

Problems resolving clutter, workload bottlenecks, and finding significance in incoming
data, are not yet problems for many models of human performance. Currently, most
cognitive and synthetic force models do not face information overload. The situation has
more typically been of amodel seeing only alimited set of information and knowing how to
perform only one or afew tasks.

In the near future, the models will have more complex simulated eyes as well as more
knowledge to interpret the eyes' input. This will lead to more incoming information with a
more difficult problem of deciding which objective o pursue next and how to choose the
best strategy based on a larger set of knowledge and perceptual inputs. We will aso find
that models will start to have trouble with information overload, clutter, and situation
assessment. Their tactics in this area will be particularly important when there are time
pressures, which are common in synthetic environments and the worlds they model.
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Current Objective: Better Integration

There are theoretical and practical problems integrating models with simulations and
with other models. The problems can appear to be simply software issues, but deeper
theoretical issues often go hand-in-hand with these problems. We thus note a few of these
problems in getting models to interact with simulations as well the basic problem of
aggregating models.

3.1 Perception

At least since de Groot's early work (1946), perception has been deemed to play an
essentia role in cognition. Neisser (1976, p. 9) aptly summarizes it as “perception is where
cognition and reality meet.” This point of view has been buttressed in recent years with the
emphasis given by Nouvelle Al (e.g., Brooks, 1992), which is based on reactive
architectures, perceptual mechanisms, and on their coupling with motor behavior.
Neuroscience (e.g., Kosslyn & Koenig, 1992) teaches that, due to evolutionary pressure, a
large part of the brain deals with perception (mainly vision); hence, an understanding of
perception is essential for understanding the behavior of combatants.

Perception-based behavior offers a series of advantages. it is fast, attuned to the
environment, and optimized with respect to its coupling with motor behavior. However, its
disadvantages include its tendency to be stereotyped and to lack generalization. In addition,
from the point of view of the modeler, it is a difficult behavior to simulate well. Thisisin
part due to the fact that low-level perception is still poorly understood (Kosslyn & Koenig,
1992), although recent progress in robotics and agent behavior give examples of successful
implementation of basic perceptual mechanisms for use by cognition (e.g., Brooks, 1992;
Zettlemoyer & St. Amant, 1999; and St. Amant & Riedl, 2001).

Perception may be seen as the common ground where various aspects of cognition meet,
including motor behavior, concept formation and categorization, problem solving, memory,
and emotions. In several of these domains, computer simulations illustrating the role of
perception have been devel oped.

Brooks (1992) and others have investigated the role of perception in motor behavior
with simple insect-like robots. The link between concept formation and (high-level)
perception has been studied using the EPAM architecture (Gobet, Richman, Staszewski, &
Simon, 1997). The role of perception in problem solving has been studied using Chunk
Hierarchy and REtrieval Structures (CHREST), a variation of EPAM (Gobet, 1997; Gobet
& Jansen, 1994) that also accounts for multiple memory regularities. Eye movements are
simulated in detail in CHREST but not the low-level aspect of perception. (We will deal
with the relation between problem solving and perception in Sec. 3.2.)
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A more detailed simulation of low-level aspects of perception, such as feature
extraction, is an important goal for the future of research on the relation of perception to
other aspects of cognition. In addition, little work has been done on modeling perception in
dynamically changing environments and on the effects of stress, emotion, motivation, and
group factors on perception.

It is useful to separate perception from cognition in modeling human performance. The
border between the model of the person and their environment can (arguably) be drawn at
the boundary between cognition and perception, with perception belonging to a large extent
in the environment model. This may be true for psychological reasons (Pylyshyn, 1999). It
is also true to support tying models to simulations and for use of the resulting knowledge by
cognition in problem solving (Ritter, Baxter, Jones, & Young, 2000). The typical acts
performed by perception and motor action, such as determining the objects in view, their
shapes and sizes, and then manipulating them, are most easily performed where the objects
reside. This forces the implementation of theories of interaction into the simulation language
instead of the modeling language.

It would be useful to have redlistic stochastic distributions of differences in perception
among individual agents, and also the ability to augment perception with instruments from
field glasses to night sights. These devices could be modeled as plug-ins to the perception
model. Models of perception in synthetic environments are typicaly simple, being a
function of distance from observer to object (e.g., if there is a clear line of sight and the
absence of cover and smoke). On the other hand, human vision changes in important ways
with the ambient level of light and with the part of the retina on which an image fals. The
edges of the retina are particularly sensitive to the detection of a moving object, while the
fovea has the best resolution for identifying distant objects and is most sensitive to color.
The distance at which an object can be seen depends on its brightness, its size, and its
contrast to the background as well as the permeability of the air to light. Thus, a detonation
will be visible from a much greater range than a moving tank, which in turn will be much
easier to spot than a motionless, camouflaged soldier.

Stuation awareness is a term that is still the subject of much debate in the human
factors and ergonomics communities (e.g., see the Special Issue of Human Factors, Volume
37, Issue 1). Pew and Mavor (1998) consider situation awareness to be a key concept in the
understanding of military behavior. We agree, but also beieve that situation awareness
should be modeled at a finer level of detail than is currently often done (see Pew & Mavor,
1998, chap. 7, for a current review).

3.2 Combining Perception and Problem Solving

Pew and Mavor (1998) note that an important constraint on problem solving is
perception, but do not explore this in detail. As mentioned in our discussion on expertise,
perception plays an important role in skilled behavior—experts sometimes literally see the
solution to a problem (de Groot, 1946/1978).

We may use Kossyn and Koenig's (1992) definition: higher-level visual processing
involves using previously stored information; lower-level visua processing does not involve
such stored information and is driven only by the information impinging on the retina We

20 Human Systems IAC SOAR, 2003



Chapter 3. Current Objective: Better Integration

focus here on higher-level perception and, thus, we will not consider mechanisms used for
finding edges, computing depth, and so on.

Neisser’'s Cognition and Reality (1976) describes what is often referred to as the
perceptua cycle. This approach underpins a vast amount of the cognitive engineering
literature and research. At its smplest, the perceptua cycle is a cycle between the
exploration of reality and representing this reality as schemas (in the general sense).
Schemas direct exploration (perceptual, haptic, etc.) that involves sampling the object
(looking at the real world), which may alter the object, which means that the schemas have
to be modified. (See Neisser, 1976, p. 21, or p. 112 for a more complete description.) This
work suggests that an important aspect of behavior has been missing from many theories
and models of problem solving that have not included perception.

It is natural that researchers have attempted in recent years to combine perception and
problem solving in artificia systems. One can single out three main approaches. robotics,
problem-solving architectures incorporating perception, and perceptual architectures being
extended to problem solving.

In robotics, Nouvelle Al has attempted to build robots able to carry simple problem-
solving behavior without explicit planning by linking sensor and motor abilities tightly (e.g.,
the behavior-based architecture of Brooks, 1992). Robots based on this approach are
excellent at obstacle-avoiding behavior. It is, however, unclear how far this approach can be
extended to more complex problem solving without incorporating some sort of planning.

Including perception in behavioral models is a useful way to add natural competencies
and limitations to behavior. Pew and Mavor note that there are few models of how
perception influences problem solving. Their summary can be extended and revised in this
area, however. We have seen in existing cognitive models (Byrne, 2001; Chong, 2001; de
Groot & Gobet, 1996; Gobet, 1997; Jones, Ritter, & Wood, 2000; Ritter & Bibby, 2001,
Salvucci, 2001) and in Al models (Elliman, 1989; Grimes, Picton, & Elliman, 1996; St.
Amant & Riedl, 2001) that perception is linked to and can provide behavioral competencies
and restrictions on problem solving. While Pew and Mavor note that they are unaware of
any attempt in Soar to model the detailed visua perceptual processesin instrument scanning
(Pew & Mavor, 1998, p. 181), such models exist (Aasman, 1995; Aasman & Michon, 1992;
Bass et da., 1995), and some are even cited by Pew and Mavor (1998, p. 95) for
other reasons.

The Soar model reported by Bass et al. (1995) scans a simple air-traffic control display
to find wind velocity. The model learns (chunks) this information and uses it and the display
to track and land a plane through airport air traffic control. The model then reflects on what
it did to consider a better course of action. This model shows tentative steps towards using
Soar’'s learning mechanism for situation learning and assessment based on information
acquired through active perception (see Pew & Mavor, 1998, p. 197). Modeling visua
cognition within Soar is ongoing at the University of Southern California’s Information
Sciences Ingtitute (USC/I1SI; Hill, 1999) and at the Pennsylvania State University.

The EPAM architecture (Feigenbaum & Simon, 1984), the initial goal of which wasto
model memory and perception, has recently been extended into a running production system
(Gobet & Jansen, 1994; Lane, Cheng, & Gobet, 1999). The chunkslearned while interacting

Human Systems IAC SOAR, 2003 21



Modeling Human Performance

with the task environment can later be used as conditions of productions. The same chunks
are also used for the creation of schemas and for directing eye movements.

Recently, there have been several attempts to move the perception component from
models into the architectures, regularizing and generalizing the results in the process.
Prominent cognitive architectures Soar and ACT-R have been extended to incorporate
perceptual modules, and PSI also has a perceptual module. With Soar, aperceptual module
is available based on EPIC (Chong & Laird, 1997) and another based loosely on a spotlight
theory of attention (Ritter et a., 2000). With ACT-R, two perceptual modules have been
developed independently: the Nottingham architecture (Ritter et al., 2000) and ACT-R/PM
(based on but also extending EPIC; Byrne 1997, 2001). This approach creates situated
models of cognition, that is, models that interact with (simulations of) the real world.

None of these approaches has been tested with complex, natural, and dynamically
changing environments. The robotics approach is the only one currently demonstrated to
cope with natural, albeit rather simple, environments. The two other approaches can interact
with computer interfaces that are complex and dynamic (e.g., Salvucci, 2001).

3.3 Integration of Psychology Theories

A glance at almost any psychology textbook reveals that the study of human cognition
is conventionally divided into topics that are presented as if they have little to do with each
other. There will be separate chapters on attention, memory, problem solving, and so on.
However, the range and variety of tasks undertaken by people at work, and also those
tackled by synthetic agents, typically require the application and interplay of many different
aspects of cognition simultaneously or in close succession. Interacting with a piece of
electronic equipment, for example, can draw upon an agent’s capacity for perception,
memory, learning, problem solving, motor control, decison making, and many more
capabilities. The question of how to integrate these different facets of cognition is therefore
an important one for the simulation of human behavior.

Integrating theories across different topics of cognition is an issue that has rarely been
addressed directly and provides an important focus for future work. Agents in synthetic
environments (e.g., R. Jones, Laird, Nielsen, Coulter, Kenny, & Koss, 1999) implicitly
integrate multiple aspects of behavior. What research exists has been carried out,
appropriately enough, under the heading of unified theories of cognition using architectures
such as Soar and ACT-R. Soar offers a promising basis for such integration. Its impasse-
driven organization enables it to access different areas of cognitive skill as the need arises,
and its learning mechanism (which depends on cognitive processing in those impasses)
enables relevant information from the different areas to be integrated into directly applicable
knowledge for future use. ACT-R aso integrates multiple components.

3.4 Integration and Reusability of Models

Integration of theories can be also viewed as integration of models as software,
sometimes called reuse. It has been true for years that reuse isimportant; thisis true for two
fundamental reasons. First, reuse saves effort. In the field of object-oriented software
development, figures are often quoted for the costs associated with development with reuse
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in mind. The extra time spent in initial development is something like 20%. When the code
is reused, an application can be created in 40% of the development time for new code.
Second, and perhaps more importantly in these domains, reuse ensures consistency across
simulations and time, particularly important when creating unified theories of cognition.

There are also serious problems restricting the reuse of cognitive models. Cognitive
models are not generaly reused, even when they have been created in a cognitive
architecture designed to facilitate their reuse. There are exceptions. Pearson’s Version 2 of
his Symbolic Concept Acquisition model and its explanatory displays is an exception
(available at ai.eecs.umich.edu/soar/soar-group.html). Other exceptions include PDP toolkits
such as O'Relly’'s PDP++ (www.cnbc.cmu.edu/PDP++/PDP++.html). But, overdl,
cognitive modeling does not have the level of system reuse and visual displays that the Al
and expert systems communities now take for granted. This problem is being noticed by
othersaswell (Wray, 2001).

There are some examples of reuse that should be emulated and expanded. ACT-R now
maintains a library of existing models (act.psy.cmu.edu). We have found that the mere
existence of alibrary of student models (www.nottingham.ac.uk/pub/soar/nottingham/) has
led to increasingly better student projects. Work by Young (1999) on building a zoo of
runnable cognitive models is another example of such use done broadly. There is little
reason to believe that these results would not scale up. These improvements to the modeling
environment have helped move learning Soar (Ritter & Young, 1999) and ACT-R
(Anderson & Lebiere, 1998) from being a lengthy apprenticeship to being something that
can be taught in undergraduate courses.

Such integration is illustrated most clearly in a model of natural language sentence
processing (Lewis, 1993), in which lexical, syntactic, semantic, pragmatic, and domain-
specific knowledge are brought together in learned rules (Soar chunks) to guide language
comprehension. Probably the model that has gone furthest in demonstrating this kind of
integration is the cognitive model of the NASA Test Director, the person responsible for
coordinating the preparation and launch of the space shuttle. Nelson, Lehman, and John
(1994) describe a Soar model of a fragment of the Test Director’s performance, which
incorporates problem solving, listening to audio communications, understanding language,
speaking, visual scanning (through a procedure manual), page turning, and more. Such
integrated models are also starting to be created in ACT-R (Anderson & Lebiere, 1998).

Integration of adightly different flavor—across capabilities rather than across textbook-
like topics of cognition—is illustrated in another Soar model, this one being of exploratory
learning of an interactive device (Rieman et a., 1996). At first glance, it might seem that
exploratory learning is not especialy relevant to the human behavior that is, apart from
guestions of training, the main focus of this report. Fighter pilots and tank commanders are
highly trained and expert individuals, and presumably do not learn significantly from further
experiences. However, component skills such as comprehending a novel situation, looking
around to discover relevant options, and assessing a course of action—which are
fundamental components of expert skill—are also precisedly what are required for
exploratory learning and reactive planning in uncertain environments.

Rieman et al. (1996) describe the IDXL model, which models an experienced computer-
user employing exploratory learning to discover how to perform specified tasks with an
unfamiliar software application. IDXL searches both the external space provided by the
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software and the internal space of potentially relevant knowledge. It seeks to comprehend
what it finds and approximates the rationally optimal strategy (Anderson, 1990) for
exploratory search. A typical sequence of interrelated capabilities would be for the mode
first to learn how to start a spreadsheet program from external instruction; then to use that
new knowledge as a basis for analogy to discover how to start a graph-drawing package;
and then to build on its knowledge by learning through exploration how to draw a graph.
The model works with a limited working memory, employs recognition-based problem
solving (Howes, 1993), and acquires display-based skill (Payne, 1991) in an interactive,
situated task.

These problems of reusability are even more acute when creating models for synthetic
environments because of the size and type of models. This is true for several reasons. the
knowledge is more extensive and exact than many laboratory domains previously studied.
The models must interact with complex, interactive simulations. The work may be
classified, which will add an additional constraint in hiring someone with multiple skills.
Scenarios may simulate hours of behavior rather than the minutes of typically modeled
laboratory tasks. This represents a lot of knowledge, and the timeframe can make
troubleshooting more difficult. Finally, there are many cases where an explanation facility is
required to explain the model’ s behavior for other observers.

3.5 Summary

A framework to assist with integration and reuse will have to be developed. It should be
common in the sense that the appropriate simulation entities and analysis tools would be
available, and for a given application or analysis, devel opers would plug them together. The
DIS protocol and ModSAF are being used in this way to some extent, but they are hard to
use and do not support the desired level of ease of use nor the level of cognitive realism.
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In addition to improving the match of synthetic forces to human behavior itself, there
are several aspects of these models that must be improved so they can be devel oped, tested,
and used by modelers and analysts. A large amount of time is often required to build models
and understand their behavior, more than we believe should be necessary. The difficulties of
smply creating and manipulating models of behavior can preclude us from spending more
time developing and testing models, and using these models in training or for performing
“what-if” analyses.

While Pew and Mavor (1998, p. 10) initialy note that their report will not address
usability, they later (p. 282) note the need to have quickly reconfigurable models. They also
discuss (p. 292) ease of use. This revision is completely appropriate because usability is
important. Models that are too difficult to be used are not used. This issue is also being
taken up in the next generation of simulation models in the United States (Ceranowicz,
1998).

4.1 Usability of the Models

As we have noted before (Ritter, Jones, & Baxter, 1998b; Ritter & Larkin, 1994),
cognitive models suffer from usability problems. Few lessons from the field of Human-
Computer Interaction (HCI) have been re-applied to increase the understanding of the
models themselves, even though many results and techniques in HCI have been discovered
using cognitive modeling.

Modelers have to interact with the model several times and in several ways over the
lifetime of the model. As a first step, the models must be easy to create. As part of the
creation and validation process, the models must be debugged on the syntactic level (will it
run?), on the knowledge level (does it perform the task?), and on a behaviora level (does it
perform the task like a human?). All of these levels are important if the costs of acquiring
behaviors are to be reduced. While we can point to some recent advances in usability
(Anderson & Lebiere, 1998; Jones, 1999b; Kalus & Hirst, 1999; Ritter et a., 1998b), further
work will be required.

It is dso probably fair to say that cognitive models can often be difficult to explain and
understand. This problem has been noted as aresult in arecent Air Force model comparison
exercise, AMBR, covered in more detail in Section 6.2.7 (Gluck & Pew, 2001a). The
difficulty in understanding a model’s behavior is partially due to their complexity, but it is
compounded at times by the difficulty of their interfaces not supporting the models in a
structured way, not displaying the model’s state, and not supporting exploration of the
model’s state. In many cases this is not intentional, but arises out of the modeling languages
youth as programming languages, and that support for usability takes time away from
applications and modeling itself.
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4.2 Desired Accuracy of the Models

Ancther problem is knowing when to stop improving the model. In science for science’s
sake,